Ergodic Theory and Measured Group Theory
Lecture 4

Exppler of ergodic transformations.
0 Irrational rotation. let $\alpha \in[-\pi, \pi)$ be set. $\frac{\alpha}{\pi} \in \mathbb{R} \backslash \mathbb{Q}$. Let $\pi \cong \mathbb{R} / \mathbb{Z} \cong S^{\prime}$ and let $T_{\alpha}: \pi \rightarrow \pi$ be the rotation by $\alpha$.
$\mathrm{g} \%$ Lemma (special case ot Lebesgue diff. Theorem). For any positivelyreasoned subset $A \leq[0,1)$, there is an open interval $I \leq[0,1)$ sit. $\geqslant 99 \%$ of $I$ is occupied by $A$, ie. $\frac{\lambda(A \cap I)}{\lambda(I)}=0.99$.
Proof. Fix $\varepsilon>0$, 子 or open $U \varepsilon[0,1)$ int. $U \geq A$ s.t. $\lambda(A) / \lambda(u)>1-\varepsilon$ $\left(\right.$ take $u$ sit. $\lambda(u \backslash A)<\varepsilon \cdot \lambda(A)$ so $\frac{\lambda / A)}{\lambda(u)}=\frac{\lambda(A)}{\lambda(A)+\lambda(u n)}>\frac{\lambda(A)}{\lambda(A)+\lambda(A) \varepsilon}$

$$
\left.=\frac{1}{1+\varepsilon} \geqslant 1-\varepsilon\right) .
$$

But $U=\bigsqcup_{n \in \mathbb{N}} I_{u}$ disjoint union of open intervals al $\frac{\lambda(A)}{\lambda(u)}=$ convex combination of $\frac{\lambda\left(A \cap I_{n}\right)}{\lambda\left(I_{n}\right)}$.
Indeed, $\frac{\lambda(A)}{\lambda(u)}=\frac{1}{\lambda(u)} \cdot \sum_{n} \lambda\left(A \cap I_{n}\right)=\sum_{n} \frac{\lambda\left(I_{n}\right)}{\lambda(u)} \cdot \frac{\lambda\left(A I_{n}\right)}{\lambda\left(I_{u}\right)}$.
Hence, at least for one u, $\frac{\lambda\left(A \cap I_{n}\right)}{\lambda\left(I_{n}\right)}>1-\varepsilon$ here $0, w$. $\frac{\lambda(A)}{\lambda(u)} \leq$ convex combo of $1-\varepsilon \stackrel{\lambda\left(I_{u}\right)}{=1-\mu}$, contradiction.

Pop. Irrational rotation $T_{\alpha}$ is ergodic.
Proof. Towards a unt-adiction, let $A$ be a $T_{\alpha}$-inucriact measurable set sit. both $A$ al $A^{( }$have positive measure. By the $99 \%$ lan, 7 intervals (ie. segments in $S$ ) Id $J$ st. $99 \%$ of I is $A \perp s 5 \%$ of $J$ is $A^{c}$.
Sang $|J| \leq|I|$. Invariance of $A^{c}$ implies the the translates $T^{k} J$ of $J$ ane still $99 \% A^{c}$. We cover at least half of I by translates of 5 , so $0.99 \cdot \frac{1}{2}$ if I is $A^{c}$ bat it's $>$ i'sotI, a contradiction. How do we cover?


By the density of the orbit of the lett endpoint
 fraction of $I$.

Aphlicfion do graph coloring. Recall $G_{r_{a}}$ is the gape of $T_{\alpha}$, ansiler its undirented version. Then velez connected component is a $\mathbb{Z}$ - line $\rightarrow$ This, has graph is 2-oloruble using Axiom of Choice to pick a stating point from each of the ratinuam-anning cogpovents.

But what it we wand a measurable coloring, i.e. each color is a measurable set? How macy colors to we need?
We can do it with 3 woos:


Proof. Suppose that it is, so $\exists$ set (i.e-acolor) $A$ set. $T_{\alpha} A=A^{c}$. Burs $T_{\alpha}$ is neasine preserving, $A$ al $A^{c}$ have to have the save wearer, hence $\lambda(A)=\lambda\left(A^{\circ}\right)=\frac{1}{2}$. But $T_{\alpha}^{2} A=A$ \& $T_{\alpha}^{2} A^{c}=A^{c}$, d $T_{\alpha}^{2}=T_{2 \alpha}$, $10 A$ is a $T_{2 \alpha}$-invariant A. But $T_{2 \alpha}$ is still an ientioral cotetion, hence ergodic. Mas, $\lambda(A)$ $=0$ or 1 , a contradiction.

- One sided shift. $s: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ with an g Bernoulli mesusure $\mu:=\nu^{\mathbb{N}}$, woe $v$ is a measure on $2:=\{0,1\}$. We'll prove a stronger statement than ergodicity, manely, mixing.
Def. A pap transformation $T:(x, y) \rightarrow(x, \mu)$ is called mixing
if for any meas. $A, B \subseteq X, \mu\left(A \cap T^{-n} B\right) \rightarrow \mu(A)^{p \mu p \|} \cdot \mu(B)$ as $u \rightarrow a$.
Probability, detour. St, $A, B$ are called inclepenclat if

$$
\mu(A \cap B)=\mu^{\prime}(A) \mu(B) \text {, } . e, \frac{\mu(B)}{\mu^{\mu}(x)}=\frac{\mu(B \cap A)}{\mu^{\mu}(A)} \text {. }
$$

S. nuking says $h 1$ eventaclly $A$ a $T^{-n} B$ become almost inclapendent.

Mixing $\Rightarrow$ ergodic. Let $A$ be a $T$-invariant, so $T^{+n} A=A$. Take $B=A$
Then $\mu\left(A \cap T^{-n} A\right) \rightarrow \mu(A)^{2}$ as $n \rightarrow \infty$

$$
\mu\left(A^{\prime \prime} \cap A\right)=\mu(A)
$$

Thus, $\mu(A)^{2}=\mu(A)$, $0 \mu(A) \in\{0,1\}$,

Poop. The shift $s$ is mixing.
Pool. First we prove this in case $A, B$ are basic cooper sets, ice. $A=[s], B=[t]$, when e $s, t \in 2^{<\mathbb{N}}$.
(Dative $[s]:=\left\{x \in 2^{\mathbb{N}}: \times\right.$ stacks with $\left.s\right\}$.)
[s]:

$(t):$

$$
\begin{aligned}
& {[s]=[0|1| 10|-k| q|\alpha| x|x| x \mid}
\end{aligned}
$$

$$
\begin{aligned}
& \mu^{\mu}\left([s) \cap T^{-\mu}(t)\right)=\mu([s])-\mu([t]) . \quad \square(\text { Ge haic dopen })
\end{aligned}
$$

For gevecal $A, B$, approximate $A$ d $B$ by tisite disjant unions of basic dogun suts (execiser).

