Ergodic Theory and Measured Group Theory Lecture 4

Exception of organic transformations.
O Irreditional coloritions. Let
$$d \in [-T, T]$$
 be s.t. $\frac{d}{T} \in \mathbb{R} \setminus \mathbb{Q}$.
Let $T \cong \mathbb{R}/\mathbb{Z} \cong S'$ and let $T_u : T \to T$ be the coloritisticly-
users and subset $A \subseteq [0, 1)$, there is an open citerial $T \in [0, 1)$
s.t. $\Xi 95\%$, of T is occupied by A , i.e. $\lambda(A \cap T) = 0.99$.
 $\lambda(T)$
Proof. Fix $\Xi > 0$, \exists are open $U \subseteq [0, 1]$ i.t. $U \ge A$ s.t. $\lambda(A)/\lambda(U) > t \leq (t + U + t) + \lambda(U \setminus A) \geq 1 \cdot \lambda(A) > (t + \lambda(A)/\lambda(U)) > t \leq (t + U + t) + \lambda(U \setminus A) \geq 1 \cdot \lambda(A) > (t + \lambda(A)/\lambda(U)) > t \leq (t + U + t) + \lambda(U \setminus A) \geq 1 \cdot \lambda(A) > 0$ and $\lambda(U) = \lambda(A) > \lambda(A) + \lambda(A) + \lambda(A) \leq 1 \cdot \lambda(A) > 0$
 $\beta_{U} \downarrow U = \bigcup_{n \in \mathbb{N}} I_{n}$ disjoid when of open intervals at
 $\frac{\lambda(A)}{\lambda(U)} = \lim_{n \in \mathbb{N}} \sum_{n \in \mathbb{N}} \lambda(A \cap T_n) = \sum_{n \in \mathbb{N}} \frac{\lambda(I_n)}{\lambda(U)} \cdot \frac{\lambda(A \cap T_n)}{\lambda(U)} = \frac{\lambda(A)}{\lambda(U)} \cdot \frac{\lambda(A \cap T_n)}{\lambda(U)} = \frac{\lambda(A)}{\lambda(U)} = \frac{\lambda(A)}{\lambda(U)} \cdot \frac{\lambda(A \cap T_n)}{\lambda(U)} = \frac{\lambda(A)}{\lambda(U)} = \sum_{n \in \mathbb{N}} \frac{\lambda(A \cap T_n)}{\lambda(U)} = \sum_{n \in \mathbb{N}} \frac{\lambda(A \cap T_n)}{\lambda(U)} = \sum_{n \in \mathbb{N}} \frac{\lambda(A \cap T_n)}{\lambda(U)} \cdot \sum_{n \in \mathbb{N}} \frac{\lambda(A \cap T_n)}{\lambda(U)} = \sum_{n \in \mathbb{N}} \frac$

Application to graph wooring. Reall Gr is the graph of Ta sucider its undirected version. Then every connected composent is a Q-line <u>* to to to to to to to the symphe</u> is 2-colorable using Axism & Choice to pick a starting point ran each of the outinuum-many components.

But what it we want a mansurable coloring, i.e. each color
is a measurable set? How many colors do we need?
We can do it with 3 colors:
Me d Hanver, 2 measurable colors areaf enargh-
Core For an irrational rotation Te, Gra-
is not measurably 2-colorable.
Pool Suppose that it is, co 3 set (i.e. a wobr)
A s.t. TA = A. Barse Ta is measure-
preserving, A at A have to have
the same measure, hence
$$\lambda(A) = \lambda(A^*) = 1$$
.
But $T_{2}A = A$ d $T_{A}A^* = A^*$, at
 $T_{2}^2 - T_{24}$, so A is a Try-invariant
A. But T_{24} is still an irrational
rotation, hence ecgodic. Thus, $\lambda(A)$
 $= 0$ or 1 , a contradiction.

O <u>One sided shift</u>. s: 2^{IN} » 2^{IN} with any Bernoulli magnesure J := v^{IN}, where v is a measure on 2:= 50,17. We'll prove a stronger statement then ergodicity, manely, mixing. <u>Def.</u> A pap transformation T: (X, J) ~ (X, J) is called mixing

Mixing
$$\Rightarrow$$
 ergodic. Let A be a T-invariant, so $T^{m}A = A$. Take $B = A$.
Then $\mathcal{V}(A \cap T^{m}A) \rightarrow \mathcal{V}(A)^{2}$ as $u \rightarrow \infty$
 $\mathcal{V}(A \cap A) = \mathcal{V}(A)$.
Thus, $\mathcal{V}(A)^{2} = \mathcal{V}(A)$ so $\mathcal{V}(A) < \{0, 1\}$, \Box

Prop. The shift s is mixing.
Proof. First we prove this in case A, B are basic dope suby,
i.e.
$$A = [s], B = [t],$$
 where $c, t \in 2^{CW}$.
(Define $[s] := \int x \in 2^{IN} : x \text{ starty with } s \}$.)
 $[s] : [OITIIOI*I*I*I*I*I*I
s
(t] : [IIIIOIIOI*I*I*I*I*I*I
t$

$$\begin{aligned} |s| & t \\ |t | n \ge |u_{y}|_{L}(s). \quad T^{-n}[t] = \underbrace{|x| + |x| + |1| |0|| |0| + |x| + |1|}_{[s]} \\ [s] & = \underbrace{|0|||| |0| + |x|| + |1| |0|| |0| + |x| + |x| + |x|}_{s} \\ [s] & \Lambda T^{-n}[t] := \underbrace{|0|||| |0| + |x|| + |1| |0|| |0| + |x| + |x| + |x|}_{s} \\ & \int ([s] & \Lambda T^{-n}[t]) := \int ([s]) - \int ([t]). \quad \Box (br has is dopen) \\ \hline \\ for general A_{i}B_{i} approximate A \ d B_{i} by link disjoint \\ unions of basic dopen site (exercise). \quad \Box \end{aligned}$$